HW10 - REDOX and Electrochemical Cells

Question 1	4 pts	Question 5	4 pts
Balance the skeletal equation of hydrazine with chlorate ions, shown below:		Consider the cell reaction represented by the skeletal equation:	
$N_2H_4(g) + CIO_3^-(aq) \longrightarrow NO(g) + CI^-(aq)$		$Mn(s) + Ti^{2+}(aq) \longrightarrow Mn^{2+}(aq) + Ti(s)$	
The reaction takes place in basic solution. What is the smallest possible integer		What is the proper cell diagram for this reaction?	
coefficient of CIO ₃ ⁻ in the balanced equation?			
O 4		○ Mn(s) Mn ²⁺ (aq) Ti ²⁺ (aq) Ti(s)	
○ 1		○ Mn ²⁺ (aq) Mn(s) Ti(s) Ti ²⁺ (aq)	
O 2		○ Ti(s) Ti ²⁺ (aq) Mn ²⁺ (aq) Mn(s)	
○ 3		○ Ti ²⁺ (aq) Ti(s) Mn(s) Mn ²⁺ (aq)	
Overetion 2	2 mts	Question 6	4 pts
Question 2	3 pts		
Identify the reducing agent in the reaction in question 1.		e 1.10 V voltmeter	
○ N ₂ H ₄		Zinc Copper (anode) (cathode)	
○ NO		(anoue) (+) (canoue)	
○ Cl·			
○ CIO ₃ ·		salt bridge	
Question 3	3 pts		
		1M Zn ²⁺ (aq) 1M Cu ²⁺ (aq)	
In the reaction of thiosulfate ion with chlorine gas in an acidic solution, what is the reducing agent?	е	In this electrochemical cell, what is the reduction half reaction?	
$Cl_2(g) + S_2O_3^{2-}(aq) \longrightarrow Cl^{-}(aq) + SO_4^{2-}(aq)$		$\bigcirc Cu^{2^+}(aq) + 2e^- \longrightarrow Cu(s)$	
○ S ₂ O ₃ ² ·		\bigcirc Zn(s) \longrightarrow Zn ²⁺ (aq) + 2e ⁻	
○ Cl ₂		$\bigcirc Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$	
○ S ²⁺		\bigcirc Zn ²⁺ (aq) + 2e ⁻ \longrightarrow Zn(s)	
○ CI			
		Question 7	4 pts
Question 4	4 pts		
Balance the reaction in question 3 using oxidation and reduction half-reactions. V	What is	In a galvanic cell	
the smallest possible integer coefficient of SO ₄ ²⁻ in the combined balanced equal		oxidation and reduction take place at the same time, but at different electrodes	
		electrical energy is used to reverse spontaneous chemical reactions	
01		electrolytes are added to carry electrons between electrodes	
O 3		oxidation takes place at the cathode	
O 4			
		Question 8	4 pts
		In a working electrochemical cell (a galvanic cell or a battery), the cations in the	salt
		bridge move toward the cathode.	
		○ True	
		○ False	

 $\hfill \bigcirc$ It depends on the charge of the cation.

O It is impossible to tell unless we know if the cathode is "+" or "-".